Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 554
Filtrar
1.
Neurology ; 102(10): e209310, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38713890

RESUMO

BACKGROUND AND OBJECTIVES: Pathogenic variants in NOTCH3 are the main cause of hereditary cerebral small vessel disease (SVD). SVD-associated NOTCH3 variants have recently been categorized into high risk (HR), moderate risk (MR), or low risk (LR) for developing early-onset severe SVD. The most severe NOTCH3-associated SVD phenotype is also known as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We aimed to investigate whether NOTCH3 variant risk category is associated with 2-year progression rate of SVD clinical and neuroimaging outcomes in CADASIL. METHODS: A single-center prospective 2-year follow-up study was performed of patients with CADASIL. Clinical outcomes were incident stroke, disability (modified Rankin Scale), and executive function (Trail Making Test B given A t-scores). Neuroimaging outcomes were mean skeletonized mean diffusivity (MSMD), normalized white matter hyperintensity volume (nWMHv), normalized lacune volume (nLV), and brain parenchymal fraction (BPF). Cox regression and mixed-effect models, adjusted for age, sex, and cardiovascular risk factors, were used to study 2-year changes in outcomes and differences in disease progression between patients with HR-NOTCH3 and MR-NOTCH3 variants. RESULTS: One hundred sixty-two patients with HR (n = 90), MR (n = 67), and LR (n = 5) NOTCH3 variants were included. For the entire cohort, there was 2-year mean progression for MSMD (ß = 0.20, 95% CI 0.17-0.23, p = 7.0 × 10-24), nLV (ß = 0.13, 95% CI 0.080-0.19, p = 2.1 × 10-6), nWMHv (ß = 0.092, 95% CI 0.075-0.11, p = 8.8 × 10-20), and BPF (ß = -0.22, 95% CI -0.26 to -0.19, p = 3.2 × 10-22), as well as an increase in disability (p = 0.002) and decline of executive function (ß = -0.15, 95% CI -0.30 to -3.4 × 10-5, p = 0.05). The HR-NOTCH3 group had a higher probability of 2-year incident stroke (hazard ratio 4.3, 95% CI 1.4-13.5, p = 0.011), and a higher increase in MSMD (ß = 0.074, 95% CI 0.013-0.14, p = 0.017) and nLV (ß = 0.14, 95% CI 0.034-0.24, p = 0.0089) than the MR-NOTCH3 group. Subgroup analyses showed significant 2-year progression of MSMD in young (n = 17, ß = 0.014, 95% CI 0.0093-0.019, p = 1.4 × 10-5) and premanifest (n = 24, ß = 0.012, 95% CI 0.0082-0.016, p = 1.1 × 10-6) individuals. DISCUSSION: In a trial-sensitive time span of 2 years, we found that patients with HR-NOTCH3 variants have a significantly faster progression of major clinical and neuroimaging outcomes, compared with patients with MR-NOTCH3 variants. This has important implications for clinical trial design and disease prediction and monitoring in the clinic. Moreover, we show that MSMD is a promising outcome measure for trials enrolling premanifest individuals.


Assuntos
CADASIL , Doenças de Pequenos Vasos Cerebrais , Progressão da Doença , Receptor Notch3 , Humanos , Receptor Notch3/genética , CADASIL/genética , CADASIL/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Seguimentos , Adulto , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Imageamento por Ressonância Magnética , Idoso , Função Executiva/fisiologia , Fatores de Risco
2.
Tijdschr Psychiatr ; 66(2): 107-111, 2024.
Artigo em Holandês | MEDLINE | ID: mdl-38512150

RESUMO

A 55-year-old man with recurrent depressive episodes, with onset at age 45, was admitted to hospital after a suicide attempt. Due to a recent stroke as well as a family history of stroke and depression, CADASIL (prevalence of 2-5 per 100.000) was considered as a possible diagnosis. Although depression is common in CADASIL, the initial presentation is not typically comprised of recurrent depressions. Brain MRI, however, did not show the characteristic white matter lesions in the anterior temporal lobe. Genetic analysis revealed a cysteine-sparing mutation (Arg61Trp) in the NOTCH3 gene. Recently, several such mutations have been associated with CADASIL presenting with an atypical phenotype including a lower prevalence of recurrent stroke. This suggests that the prevalence of CADASIL may be higher than estimated in depressed patients. This case demonstrates the importance of considering CADASIL as a possible etiology of depression as this has consequences for prognosis, treatment and genetic counseling.


Assuntos
CADASIL , Transtorno Depressivo Maior , Acidente Vascular Cerebral , Masculino , Humanos , Pessoa de Meia-Idade , Depressão , CADASIL/complicações , CADASIL/diagnóstico , CADASIL/genética , Tentativa de Suicídio
3.
Medicine (Baltimore) ; 103(11): e37563, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489688

RESUMO

INTRODUCTION: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one kind of monogenic hereditary small-vessel disease in the brain caused by mutations in the NOTCH3 gene. However, it is rare for CADASIL to recur with different clinical manifestations in 1 patient, and some atypical clinical manifestations can easily lead to misdiagnosis by clinical physicians. CASE CONCERN: A 34-year-old male presented with transient speech disorder accompanied by weakness in the left side of the body for 1 day in June 2020. Magnetic resonance imaging showed acute ischemic infarction in right centrum semiovale, along with multiple abnormal white matter hyperintensities in the brain. Genetic sequencing identified a heterozygous mutation in the NOTCH3 gene. The patient experienced recurrent episodes in 2021 and 2023, with varying clinical symptoms including visual blurring, abnormal limb sensation, and sudden cognitive dysfunction. DIAGNOSIS: The diagnoses of CADASIL is based on clinical manifestations, imaging results, and genetic reports. INTERVISION AND OUTCOMES: The patient was received symptomatic treatment including antiplatelet aggregation therapy, lipid regulation, and plaque stabilization, resulting in improved symptoms. OUTCOMES: During the course of the disease, after medication treatment and rehabilitation exercise, the patient clinical symptoms have significantly improved. Currently, the patient is closely following up and regularly undergoing relevant examinations. LESSONS: In this rare case, we found that CADASIL can recur multiple times in a patient with different clinical symptoms, which can easily lead to clinical misdiagnosis. Clinicians should consider the possibility of CADASIL in young patients with sudden typical neurological dysfunction.


Assuntos
CADASIL , Leucoencefalopatias , Masculino , Humanos , Adulto , CADASIL/complicações , CADASIL/diagnóstico , CADASIL/genética , Receptor Notch3/genética , Encéfalo/patologia , Mutação , Imageamento por Ressonância Magnética , Leucoencefalopatias/complicações , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/patologia
4.
Eur Rev Med Pharmacol Sci ; 28(4): 1605-1609, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38436192

RESUMO

BACKGROUND: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal dominantly inherited cerebral small vessel disease caused by Neurogenic locus notch homolog protein 3 (NOTCH3) gene mutations. The main clinical features include migraine with aura, recurrent ischemic strokes and dementia. Brain MRI typically shows multiple small lacunar infarcts and severe, diffuse, symmetrical white matter hyperintensities (WMHs), with characteristic involvement of the anterior temporal pole, external capsule, and superior frontal gyrus. Reports of twins with CADASIL are scarce. Herein we describe a pair of monozygotic twins with peculiar CADASIL phenotype, carrying a new NOTCH3 variant. CASE PRESENTATION: Twin A was a 45-year-old male suffering from migraine, obesity, arterial hypertension, and polycythemia (with negative genetic analysis), who complained of a transient, short-lasting (~ 5 minutes) episode of speech difficulties. Brain MRI showed diffuse, symmetrical, confluent periventricular WMHs involving frontal, parietal, and temporal lobes and external capsules, with sparing of anterior temporal poles. Genetic analysis of NOTCH3 gene demonstrated the presence of missense c.3329G>A, p.(Cys1110Tyr) variant, confirming CADASIL diagnosis. Twin B, affected by migraine and polycythemia, as well as his monozygotic twin, presented with a 2-month history of trigeminal neuralgia. Brain MRI demonstrated diffuse WMHs with a pattern of distribution like his twin. Genetic analysis revealed the same NOTCH3 pathogenic variant. CONCLUSIONS: Our monozygotic twins have a strikingly similar neuroimaging picture with sparing of anterior temporal poles. They also have a peculiar phenotype, both presenting polycythemia without genetically confirmed cause. Twin B had trigeminal neuralgia, that is unusual in CADASIL. The possible association of the peculiar findings with the newly reported NOTCH3 variant needs to be confirmed with further observations.


Assuntos
CADASIL , Transtornos de Enxaqueca , Policitemia , Neuralgia do Trigêmeo , Masculino , Humanos , Pessoa de Meia-Idade , Gêmeos Monozigóticos/genética , CADASIL/diagnóstico por imagem , CADASIL/genética , Receptor Notch3/genética
5.
J Clin Invest ; 134(8)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386425

RESUMO

Loss of arterial smooth muscle cells (SMCs) and abnormal accumulation of the extracellular domain of the NOTCH3 receptor (Notch3ECD) are the 2 core features of CADASIL, a common cerebral small vessel disease caused by highly stereotyped dominant mutations in NOTCH3. Yet the relationship between NOTCH3 receptor activity, Notch3ECD accumulation, and arterial SMC loss has remained elusive, hampering the development of disease-modifying therapies. Using dedicated histopathological and multiscale imaging modalities, we could detect and quantify previously undetectable CADASIL-driven arterial SMC loss in the CNS of mice expressing the archetypal Arg169Cys mutation. We found that arterial pathology was more severe and Notch3ECD accumulation greater in transgenic mice overexpressing the mutation on a wild-type Notch3 background (TgNotch3R169C) than in knockin Notch3R170C/R170C mice expressing this mutation without a wild-type Notch3 copy. Notably, expression of Notch3-regulated genes was essentially unchanged in TgNotch3R169C arteries. We further showed that wild-type Notch3ECD coaggregated with mutant Notch3ECD and that elimination of 1 copy of wild-type Notch3 in TgNotch3R169C was sufficient to attenuate Notch3ECD accumulation and arterial pathology. These findings suggest that Notch3ECD accumulation, involving mutant and wild-type NOTCH3, is a major driver of arterial SMC loss in CADASIL, paving the way for NOTCH3-lowering therapeutic strategies.


Assuntos
CADASIL , Camundongos , Animais , Receptor Notch3/genética , CADASIL/genética , CADASIL/metabolismo , CADASIL/patologia , Agregados Proteicos , Receptores Notch/genética , Receptores Notch/metabolismo , Artérias/patologia , Camundongos Transgênicos , Mutação
6.
BMC Neurol ; 24(1): 77, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408980

RESUMO

BACKGROUND: CADASIL(Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)is an inherited small vessel disease caused by mutations in NOTCH3 gene. Although NOTCH3 has numerous hotspots of gene mutations, mutations in exons 9 are rare. The p.C484T gene mutation type associated with it has not been reported in any relevant cases yet. Furthermore, CADASIL patients rarely present with acute bilateral multiple subcortical infarcts. CASE PRESENTATION: We report the case of a Chinese female patient with CADASIL who experienced "an acute bilateral subcortical infarction" because of"hemodynamic changes and hypercoagulability". In genetic testing, we discovered a new Cys484Tyr mutation in exon 9, which has also been found in the patient's two daughters. CONCLUSIONS: It is important to note that this discovery not only expands the mutation spectrum of Notch3 mutations in CADASIL patients, but also examines the mechanism behind acute bilateral subcortical infarction in CADASIL patients via case reviews and literature reviews, in order to provide some clinical recommendations for early intervention, diagnosis, and treatment in similar cases in the future.


Assuntos
CADASIL , Humanos , Feminino , CADASIL/complicações , CADASIL/diagnóstico por imagem , CADASIL/genética , Imageamento por Ressonância Magnética , Mutação/genética , Receptor Notch3/genética , Testes Genéticos , Éxons
7.
Biomolecules ; 14(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38254727

RESUMO

Notch signaling is conserved in C. elegans, Drosophila, and mammals. Among the four NOTCH genes in humans, NOTCH1, NOTCH2, and NOTCH3 are known to cause monogenic hereditary disorders. Most NOTCH-related disorders are congenital and caused by a gain or loss of Notch signaling activity. In contrast, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) caused by NOTCH3 is adult-onset and considered to be caused by accumulation of the mutant NOTCH3 extracellular domain (N3ECD) and, possibly, by an impairment in Notch signaling. Pathophysiological processes following mutant N3ECD accumulation have been intensively investigated; however, the process leading to N3ECD accumulation and its association with canonical NOTCH3 signaling remain unknown. We reviewed the progress in clarifying the pathophysiological process involving mutant NOTCH3.


Assuntos
CADASIL , Doenças de Pequenos Vasos Cerebrais , Adulto , Humanos , Animais , CADASIL/genética , Caenorhabditis elegans , Transdução de Sinais/genética , Mutação , Drosophila , Mamíferos , Receptor Notch3/genética
8.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38015629

RESUMO

Vascular aging affects multiple organ systems, including the brain, where it can lead to vascular dementia. However, a concrete understanding of how aging specifically affects the brain vasculature, along with molecular readouts, remains vastly incomplete. Here, we demonstrate that aging is associated with a marked decline in Notch3 signaling in both murine and human brain vessels. To clarify the consequences of Notch3 loss in the brain vasculature, we used single-cell transcriptomics and found that Notch3 inactivation alters regulation of calcium and contractile function and promotes a notable increase in extracellular matrix. These alterations adversely impact vascular reactivity, manifesting as dilation, tortuosity, microaneurysms, and decreased cerebral blood flow, as observed by MRI. Combined, these vascular impairments hinder glymphatic flow and result in buildup of glycosaminoglycans within the brain parenchyma. Remarkably, this phenomenon mirrors a key pathological feature found in brains of patients with CADASIL, a hereditary vascular dementia associated with NOTCH3 missense mutations. Additionally, single-cell RNA sequencing of the neuronal compartment in aging Notch3-null mice unveiled patterns reminiscent of those observed in neurodegenerative diseases. These findings offer direct evidence that age-related NOTCH3 deficiencies trigger a progressive decline in vascular function, subsequently affecting glymphatic flow and culminating in neurodegeneration.


Assuntos
Encéfalo , Demência Vascular , Receptor Notch3 , Animais , Humanos , Camundongos , Encéfalo/metabolismo , CADASIL/genética , CADASIL/patologia , Demência Vascular/metabolismo , Camundongos Knockout , Mutação , Receptor Notch3/genética
9.
Adv Biol (Weinh) ; 8(2): e2300439, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062874

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare familial neurological disorder caused by mutations in the NOTCH3 gene and characterized by migraine attacks, depressive episodes, lacunar strokes, dementia, and premature death. Since there is no therapy for CADASIL the authors investigate whether the multi-modal neuropeptide drug Cerebrolysin may improve outcome in a murine CADASIL model. Twelve-month-old NOTCH3R169C mutant mice (n=176) are treated for nine weeks with Cerebrolysin or Vehicle and histopathological and functional outcomes are evaluated within the subsequent ten months. Cerebrolysin treatment improves spatial memory and overall health, reduces epigenetic aging, and prolongs lifespan, however, CADASIL-specific white matter vacuolization is not affected. On the molecular level Cerebrolysin treatment increases expression of Calcitonin Gene-Related Peptide (CGRP) and Silent Information Regulator Two (Sir2)-like protein 6 (SIRT6), decreases expression of Insulin-like Growth Factor 1 (IGF-1), and normalizes the expression of neurovascular laminin. In summary, Cerebrolysin fosters longevity and healthy aging without specifically affecting CADASIL pathology. Hence, Cerebrolysin may serve a therapeutic option for CADASIL and other disorders characterized by accelerated aging.


Assuntos
CADASIL , Leucoencefalopatias , Animais , Camundongos , CADASIL/tratamento farmacológico , CADASIL/genética , CADASIL/patologia , Receptores Notch/genética , Longevidade , Aminoácidos/farmacologia , Aminoácidos/uso terapêutico
10.
Jpn J Radiol ; 42(2): 109-125, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847489

RESUMO

Cerebral small vessel disease (cSVD) refers to a group of pathological processes with various etiologies affecting the small vessels of the brain. Most cases are sporadic, with age-related and hypertension-related sSVD and cerebral amyloid angiopathy being the most prevalent forms. Monogenic cSVD accounts for up to 5% of causes of stroke. Several causative genes have been identified. Sporadic cSVD has been widely studied whereas monogenic cSVD is still poorly characterized and understood. The majority of cases of both the sporadic and monogenic types, including cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), typically have their onset in adulthood. Types of cSVD with infantile and childhood onset are rare, and their diagnosis is often challenging. The present review discusses the clinical and neuroimaging findings of monogenic cSVD from the prenatal to adolescent period of development. Early diagnosis is crucial to enabling timely interventions and family counseling.


Assuntos
CADASIL , Doenças de Pequenos Vasos Cerebrais , Acidente Vascular Cerebral , Adolescente , Humanos , Criança , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , CADASIL/complicações , CADASIL/genética , Acidente Vascular Cerebral/complicações , Infarto Cerebral/complicações , Neuroimagem
11.
Sci Rep ; 13(1): 22443, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105268

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, which is caused by mutations of the NOTCH3 gene, has a large heterogeneous progression, presenting with declines of various clinical scores and occurrences of various clinical event. To help assess disease progression, this work focused on predicting the composite endpoint of stroke-free survival time by comparing the performance of Cox proportional hazards regression to that of machine learning models using one of four feature selection approaches applied to demographic, clinical and magnetic resonance imaging observational data collected from a study cohort of 482 patients. The quality of the modeling process and the predictive performance were evaluated in a nested cross-validation procedure using the time-dependent Brier Score and AUC at 5 years from baseline, the former measuring the overall performance including calibration and the latter highlighting the discrimination ability, with both metrics taking into account the presence of right-censoring. The best model for each metric was the componentwise gradient boosting model with a mean Brier score of 0.165 and the random survival forest model with a mean AUC of 0.773, both combined with the LASSO feature selection method.


Assuntos
CADASIL , Acidente Vascular Cerebral , Humanos , CADASIL/genética , CADASIL/patologia , Receptor Notch3/genética , Mutação , Infarto Cerebral , Imageamento por Ressonância Magnética , Receptores Notch/genética
13.
Neuroimage Clin ; 39: 103485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37542975

RESUMO

Iron dysregulation may attenuate cognitive performance in patients with CADASIL. However, the underlying pathophysiological mechanisms remain incompletely understood. Whether white matter microstructural changes mediate these processes is largely unclear. In the present study, 30 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) patients were confirmed via genetic analysis and 30 sex- and age-matched healthy controls underwent multimodal MRI examinations and neuropsychological assessments. Quantitative susceptibility mapping and peak width of skeletonized mean diffusivity (PSMD) were analyzed. Mediation effect analysis was performed to explore the interrelationship between iron deposition, white matter microstructural changes and cognitive deficits in CADASIL. Cognitive deterioration was most affected in memory and executive function, followed by attention and working memory in CADASIL. Excessive iron in the temporal-precuneus pathway and deep gray matter specific to CADASIL were identified. Mediation analysis further revealed that PSMD mediated the relationship between iron concentration and cognitive profile in CADASIL. The present findings provide a new perspective on iron deposition in the corticosubcortical circuit and its contribution to disease-related selective cognitive decline, in which iron concentration may affect cognition by white matter microstructural changes in CADASIL.


Assuntos
CADASIL , Substância Branca , Humanos , CADASIL/diagnóstico por imagem , CADASIL/genética , CADASIL/metabolismo , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética , Ferro/metabolismo
14.
Stroke ; 54(10): e452-e464, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37602377

RESUMO

Lacunar infarcts and vascular dementia are important phenotypic characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, the most common inherited cerebral small vessel disease. Individuals with the disease show variability in the nature and onset of symptoms and rates of progression, which are only partially explained by differences in pathogenic mutations in the NOTCH3 gene. Recognizing the disease early in its course and securing a molecular diagnosis are important clinical goals, despite the lack of proven disease-modifying treatments. The purposes of this scientific statement are to review the clinical, genetic, and imaging aspects of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, contrasting it with other inherited small vessel diseases, and to provide key prevention, management, and therapeutic considerations with the intent of reducing practice variability and encouraging production of high-quality evidence to support future treatment recommendations.


Assuntos
CADASIL , Demência Vascular , Humanos , CADASIL/diagnóstico , CADASIL/genética , CADASIL/terapia , Receptor Notch3/genética , American Heart Association , Demência Vascular/genética , Demência Vascular/terapia , Infarto Cerebral , Mutação/genética , Receptores Notch/genética , Imageamento por Ressonância Magnética
16.
J Neurol Sci ; 452: 120763, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598468

RESUMO

BACKGROUND: NOTCH3 is the causative gene for autosomal dominant cerebral arteriopathy with subcortical infarctions and leukoencephalopathy (CADASIL) which is associated with both stroke and dementia. When CADASIL presents primarily as dementia it can be difficult to distinguish from Alzheimer's disease (AD) at both the clinical and neuropathological levels. METHODS: We performed exome sequencing of several affected individuals from a large family affected with AD. PCR amplification and direct Sanger sequencing were used to verify variants detected by exome analysis and to screen family members at-risk to carry those variants. Neuropathologic brain evaluation by immunohistochemistry and MRI were performed for the carriers of the NOTCH3 variant. RESULTS: In a three-generation family with AD, we found a c.601 T > C p.Cys201Arg variant in the NOTCH3 gene that caused clinical and neuropathological manifestations of CADASIL. These features included earlier onset of dementia accompanied by behavioral abnormalities in the father and son and white matter abnormalities in the asymptomatic grandson. The family is one branch of a large pedigree studied by the Alzheimer's Disease Sequencing Project (ADSP). As part of the ADSP linkage analysis and whole genome sequencing endeavor, an ABCA1 variant, p.Ala937Val, was previously found associated with AD in this pedigree. CONCLUSIONS: Our findings, together with other reported pathogenic missense variants of the C201 codon in NOTCH3, support the role of cysteine 201 as a mutation hotspot for CADASIL and highlight the genetic complexity both clinically and pathologically of AD and related dementia.


Assuntos
Doença de Alzheimer , CADASIL , Demência Vascular , Leucoencefalopatias , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , CADASIL/complicações , CADASIL/diagnóstico por imagem , CADASIL/genética , Infarto Cerebral , Receptor Notch3/genética
17.
Yi Chuan ; 45(7): 568-579, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37503581

RESUMO

Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease in adults. Many CADASIL cases were reported after NOTCH3 was identified as the causative gene of CADASIL. However, there is still no specific and effective therapies for CADASIL. In this review, we summarize recent research progress on disease models, symptomatic treatments and potential therapies for CADASIL, thereby providing a reference for follow-up CADASIL treatment research.


Assuntos
CADASIL , Leucoencefalopatias , Adulto , Humanos , CADASIL/genética , CADASIL/terapia , CADASIL/patologia , Imageamento por Ressonância Magnética , Mutação
18.
Hum Genet ; 142(9): 1361-1373, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37422595

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a condition caused by mutations in NOTCH3 and results in a phenotype characterised by recurrent strokes, vascular dementia and migraines. Whilst a genetic basis for the disease is known, the molecular mechanisms underpinning the pathology of CADASIL are still yet to be determined. Studies conducted at the Genomics Research Centre (GRC) have also identified that only 15-23% of individuals clinically suspected of CADASIL have mutations in NOTCH3. Based on this, whole exome sequencing was used to identify novel genetic variants for CADASIL-like cerebral small-vessel disease (CSVD). Analysis of functionally important variants in 50 individuals was investigated using overrepresentation tests in Gene ontology software to identify biological processes that are potentially affected in this group of patients. Further investigation of the genes in these processes was completed using the TRAPD software to identify if there is an increased number (burden) of mutations that are associated with CADASIL-like pathology. Results from this study identified that cell-cell adhesion genes were positively overrepresented in the PANTHER GO-slim database. TRAPD burden testing identified n = 15 genes that had a higher number of rare (MAF < 0.001) and predicted functionally relevant (SIFT < 0.05, PolyPhen > 0.8) mutations compared to the gnomAD v2.1.1 exome control dataset. Furthermore, these results identified ARVCF, GPR17, PTPRS, and CELSR1 as novel candidate genes in CADASIL-related pathology. This study identified a novel process that may be playing a role in the vascular damage related to CADASIL-related CSVD and implicated n = 15 genes in playing a role in the disease.


Assuntos
CADASIL , Humanos , CADASIL/genética , CADASIL/patologia , Adesão Celular , Mutação , Éxons , Fenótipo , Imageamento por Ressonância Magnética , Receptores Acoplados a Proteínas G/genética
19.
J Stroke Cerebrovasc Dis ; 32(8): 107208, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295172

RESUMO

OBJECTIVES: Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common monogenic hereditary small cerebral vessel disease, which is caused by mutation of the neurogenic locus notch homolog protein 3 gene (NOTCH3). The exon 24 encodes EGF-like repeats, variants on this exon are rare. Here, we report a novel heterozygous variant c.3892 T >G (p. Cys1298Gly) on exon 24 of NOTCH3 gene in a 57-year-old Chinese woman. MATERIALS AND METHODS: We present a patient with clinical manifestations, laboratory examination and imaging reveal suspicion of CADASIL. The family and genetic test and pathological examination were performed. RESULTS: Magnetic resonance imaging revealed diffuse leukoencephalopathy with hyperintense signals in the bilateral temporal poles, periventricular white matter, centrum semiovale, basal ganglia, frontal and parietal cortex and subcortical areas bilaterally. Molecular Genetic testing identified a heterozygous variant c.3892 T >G (p. Cys1298Gly) on exon 24 of NOTCH3 gene. Her brother and his son were confirmed as subclinical carriers of the variant. The skin biopsy was negative, but the pathologic role of this mutation is predicted by using the DynaMut database and results showed the stability of the NOTCH gene is decreased. CONCLUSIONS: To the best of our knowledge, this is the second case of exon 24 mutations reported from China and the variant of c.3892 T >G (p. Cys1298Gly) on exon 24 of NOTCH3 has not been reported so far. Our report broadens the mutation spectrum of the NOTCH3 gene in CADASIL.


Assuntos
CADASIL , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , CADASIL/diagnóstico por imagem , CADASIL/genética , População do Leste Asiático , Éxons , Mutação , Testes Genéticos , Receptor Notch3/genética
20.
Acta Neuropathol Commun ; 11(1): 76, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158955

RESUMO

Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by NOTCH3 mutations. Typical CADASIL is characterised by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small arteries. Arteriolar vascular smooth muscle cells (VSMCs) are the key target in CADASIL, but the potential mechanisms involved in their degeneration are still unclear. Focusing on cerebral microvessels in the frontal and anterior temporal lobes and the basal ganglia, we used advanced proteomic and immunohistochemical methods to explore the extent of inflammatory and immune responses in CADASIL subjects compared to similar age normal and other disease controls. There was variable loss of VSMC in medial layers of arteries in white matter as well as the cortex, that could not be distinguished whether NOTCH3 mutations were in the epidermal growth factor (EGFr) domains 1-6 or EGFr7-34. Proteomics of isolated cerebral microvessels showed alterations in several proteins, many associated with endoplasmic reticulum (ER) stress including heat shock proteins. Cerebral vessels with sparsely populated VSMCs also attracted robust accrual of perivascular microglia/macrophages in order CD45+ > CD163+ > CD68+cells, with > 60% of vessel walls exhibiting intercellular adhesion molecule-1 (ICAM-1) immunoreactivity. Functional VSMC cultures bearing the NOTCH3 Arg133Cys mutation showed increased gene expression of the pro-inflammatory cytokine interleukin 6 and ICAM-1 by 16- and 50-fold, respectively. We further found evidence for activation of the alternative pathway of complement. Immunolocalisation of complement Factor B, C3d and C5-9 terminal complex but not C1q was apparent in ~ 70% of cerebral vessels. Increased complement expression was corroborated in > 70% of cultured VSMCs bearing the Arg133Cys mutation independent of N3ECD immunoreactivity. Our observations suggest that ER stress and other cellular features associated with arteriolar VSMC damage instigate robust localized inflammatory and immune responses in CADASIL. Our study has important implications for immunomodulation approaches to counter the characteristic arteriopathy of CADASIL.


Assuntos
CADASIL , Humanos , CADASIL/genética , Molécula 1 de Adesão Intercelular , Proteômica , Proteínas do Sistema Complemento , Infarto Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA